The Coriolis Force in Maxwell’s Equations
(The Compound Centrifugal Force)

Frederick David Tombe,
Belfast, Northern Ireland, United Kingdom,
sirius184@hotmail.com
7th December 2010

Abstract. The Coriolis force is a consequence of Newton’s first law of motion and it can be observed in a radial force field as a transverse deflection of the radial component of the motion by an amount required to conserve angular momentum. It is a physical reality most commonly associated with atmospheric cyclones, but it can also be observed deflecting the effect of gravity on a comet or causing a pivoted gyroscope to defy gravity. In a paper which he wrote in 1835 in connection with water wheels, French scientist Gaspard-Gustave Coriolis referred to its mathematical formula \(2mv \times \omega\) as the “compound centrifugal force”. This is an interesting choice of name which suggests that it is the sum of two centrifugal forces, yet without giving any indication as to how this might be. The physical origins of the Coriolis force will now be traced to differential centrifugal pressure in the dense background sea of tiny aetheral vortices which serves as the medium for the propagation of light.

The Magnetic Field

I. James Clerk Maxwell explained the magnetic field in terms of a sea of tiny aetheral vortices that press against each other with centrifugal force while striving to dilate. These vortices self align with their mutual rotation axes tracing out magnetic lines of force. A tension along these lines of force accounts for magnetic attraction between unlike poles, with centrifugal repulsion acting sideways from the lines of force causing magnetic repulsion between like poles. Maxwell went on to explain the sideways force acting on an electric current that is moving at right angles through a magnetic field. The explanation is based on the principle that all the vortices within the immediate vicinity are spinning in the same direction, therefore an electric current passing through will not experience the same speed relative to the vortex circulation on one side as it will on the other. The combined effect will be a compound centrifugal force causing a sideways deflection of the current. Compound centrifugal force will likewise explain the centripetal force which causes a charged particle that is moving in a magnetic field to follow a helical path. This compound centrifugal force appeared in Maxwell’s original equations in the form \(\mu v \times H\) [1].
The Double Helix

II. The quantity μ in $\mu v \times H$ is related to the density of the sea of tiny aethereal vortices. If we consider these vortices to be dipolar, comprised of a sink (an electron) and a source (a positron), then the vorticity or magnetic field strength H is equal to 2ω, where ω is the angular velocity of the rotating electron-positron dipoles. When this compound centrifugal force appears in the form $2\mu v \times \omega$, it becomes identifiable as the familiar Coriolis force $F = 2m v \times \omega$ [2].

Fig. 1. Close-up view of a single magnetic line of force. The electrons are shown in red and the positrons are shown in black. The double helix is rotating about its axis with a circumferential speed in the order of the speed of light, and the rotation axis represents the magnetic field vector H. [3]

The Gyroscopic Force

III. The electron-positron sea passes right through the interstitial spaces within rotating atomic and molecular matter as like water passing through a basket, and so when studying gyroscopes, we need to examine the situation at the molecular level and consider the individual molecules themselves to be miniature gyroscopes. When a gyroscope is spinning, the electron-positron sea which permeates the space between its molecules will be like an electric wind circulating inside it. If we extrapolate Ampère's Circuital Law to the molecular scale, the spinning gyroscope will become comprised of many tiny gyroscopes all aligned with their mutual rotation axes tracing out solenoidal rings around its rotation axis. If we then subject the spinning gyroscope to a forced precession, this will alter the angle of attack of the electric wind and this will induce the equivalent of the aerodynamic P-factor on the molecules. For example if the applied torque causes a tilt in the molecules relative to the wind on an axis joining 3 O’clock to 9 O’clock, then the wind will act differently at 3 O’clock than it will at 9 O’clock, hence inducing a torque about the 6 O’clock/12 O’clock axis at right angles to the applied torque. The induced torque is therefore a compound centrifugal force (Coriolis force). When a pivoted spinning gyroscope topples under the force of gravity, the induced Coriolis force will deflect the gyroscope sideways.
This sideways deflection will not be merely a superimposition on top of the downward motion. Mathematically it will be, but physically it will have curled the effect of gravity. It will be like as if the tiny vortices of the electron-positron sea have introduced a vorticity into the gravitational field. And unless there were such a physical presence as this all pervading electron-positron sea, there could be nothing for the toppling gyroscope to push against in order to stop it from falling freely.

Cyclones and Comets

IV. In a radial force field such as an atmospheric cyclone or a gravitational field, the Coriolis force relative to the field’s origin has the effect of changing the transverse speed in line with conservation of angular momentum. This tells us that a physically real compound centrifugal force must be operating in conjunction with the tiny vortices of the electron-positron sea. However, when a particle is moving in uniform straight line motion in the absence of any force fields, there is no specified origin and so we cannot attribute the Coriolis force, relative to any arbitrarily chosen origin, to compound centrifugal force. As like in the spinning gyroscope, there needs to be an additional force factor applied in order to induce the asymmetry necessary to enable a compound centrifugal force to arise. The physical essence of straight line motion is simply the uniform pressure associated with the solenoidal alignment of the tiny vortices of the electron-positron sea around the line of motion of any moving element, whether be it an electric current or a cricket ball. This is what we call a magnetic field and it presses uniformly on the moving element. When a radial force field is superimposed, this will cause an asymmetry in the solenoidal pressure field due to compound centrifugal force, unless the motion is purely radial of purely transverse.

Conclusion

V. It’s a common error to believe that the Coriolis force is merely an illusion that arises when making observations from a rotating frame of reference. In fact it’s nothing of the sort. The illusion observed from a rotating frame of reference is never a Coriolis force. The Coriolis force is a physically real inertial force sourced in Newton’s first law of motion and measured relative to a polar origin. It physically manifests itself in
radial force fields in connection with conservation of angular momentum. It takes on the mathematical form \(\mathbf{F} = 2m \mathbf{v} \times \mathbf{\omega} \) and it has a physical explanation which lies in the tiny aethereal vortices that comprise the medium for the propagation of light, and it also accounts for the electromagnetic force \(\mathbf{F} = q \mathbf{v} \times \mathbf{B} \). Unlike in the case of centrifugal force, there is no intuitive way of explaining Coriolis force to the public at large. In its most commonly associated context, that being atmospheric cyclones, we might say that as the wind moves into the centre of the cyclone, and where angular momentum already exists due to the rotation of the Earth, a Coriolis force causes the wind to be increasingly deflected sideways in order to conserve angular momentum relative to the centre of the cyclone. More generally we might say that the Coriolis force is an inertial force that maintains conservation of angular momentum in a radial force field, or which causes a centripetal force to act on charged particles in a solenoidal (magnetic) force field.

Ultimately, the Coriolis force is tied up with vortex behaviour at the most fundamental aethereal level and the effect transmits itself through all scales of activity.

References

17th January 2019 Amendment